Enrollment No:	Exam Seat No:
----------------	---------------

C.U.SHAH UNIVERSITY

Summer Examination-2022

Subject Name: Real Analysis-I

Subject Code:4SC05REA1 Branch: B.Sc. (Mathematics)

Semester: 5 Date: 27/04/2022 Time: 11:00 To 02:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: [14]

- a) Define: Cauchy Sequence and Monotonic increasing sequence. (02)
- **b**) State Raabe's test for series. (02)
- c) Find the infimum and supremum of $\left\{\frac{1}{n}: n \in N\right\}$. (02)
- **d**) Define: Continuity at a point. (02)
- e) Find the range set of the sequence $\{1 + (-1)^n : n \in N\}$. (02)
- f) Check the series $\sum_{n=1}^{\infty} \left(\frac{1}{8}\right)^n$ is converges or diverges. (01)
- g) True/False: Every bounded sequence is convergent. (01)
- **h**) Define: Bounded sequence (01)
- i) True/False: $\sum \frac{1}{n^3}$ is divergent. (01)

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions [14]

- a) State and prove Bolzano Weierstrass theorem for sequences. (07)
- **b**) Prove : $\lim_{n \to \infty} \frac{3 + 2\sqrt{n}}{\sqrt{n}} = 2$ using definition. (05)
- c) Define: Limit Inferior and Limit Superior of a sequence. (02)

Q-3 Attempt all questions [14]

- a) Using Sandwich theorem, prove that $\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1.$ (05)
- **b**) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$. State the results you used. (05)
- c) Prove that every open interval contains a rational number. (04)

Q-4 Attempt all questions

- a) Test the convergence of the series $1 + x + \frac{2^2 x^2}{2!} + \frac{3^3 x^3}{3!} + \dots, x > 0$ (07)
- b) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2 (n+1)^2}{n!}.$ (04)
- c) Prove that $\lim_{n \to \infty} \frac{1+3+5+...+(2n-1)}{n^2} = 1$ (03)

Q-5 Attempt all questions

[**14**] (05)

[14]

a)
Find the right hand and lefthand limits of a function defined as follows:

$$f(x) = \begin{cases} \frac{|x-4|}{x-4} & ; x \neq 4 \\ 0 & ; x = 4 \end{cases}$$

If $\{a_n\}$ is any sequence then prove the followings:

- **b)**i. $\underline{\lim}(-a_n) = -\overline{\lim}a_n$ ii. $\overline{\lim}(-a_n) = -\underline{\lim}(a_n)$ (05)
- c) Define: Conditionally Convergent Series and Absolutely Convergent Series. (04)

Q-6 Attempt all questions

[14]

- a) Show that the geometric series 1+r+r²+...is
 i) Convergent if |r|<1, ii) Divergent if r≥1, iii) Finitely oscillating if r=-1 and
 iv) Infinitely oscillating if r<-1.
- **b)** Prove that the series $\frac{1}{2} \frac{1}{2} \cdot \frac{1}{2^2} + \frac{1}{3} \cdot \frac{1}{2^3} \frac{1}{4} \cdot \frac{1}{2^4} + \dots$ is absolutely convergent. (05)

Q-7 Attempt all questions

[14]

- a) State and prove Cauchy's general principle of convergence for sequence.
- (07)
- **b**) Show that $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{\log(n+1)}$ is conditionally convergent. (05)
- c) State Leibnitz Test for Alternating Series.

Q-8 Attempt all questions

[14]

(02)

- a) State and prove D'Alembert's ratio test. (10)
- **b)** Prove that $\sin x$ is uniformly continuous on $[0, \infty)$. (04)